Experts in the News

Global forest fires emitted 33.9 billion tons of carbon dioxide (CO2) between 2001 and 2022, according to a report by the Chinese Academy of Sciences (CAS). This makes the CO2 emissions generated by forest fires each year higher than those from burning fossil fuels in Japan — the world’s sixth-largest CO2 emitter. Driving the emissions spike was the growing frequency of “extreme forest-fire events”. Yuhang Wang, professor in the School of Earth and Atmospheric Sciences, tells Nature the report complements his work, which “indicates a roughly 20 percent rise in global burnt area by the 2050s compared to the 2000s”.

Nature

December 20, 2023

India was the world’s third-most-prolific publisher of research papers in 2022, but it was ranked only 153rd for the number of citations it received per paper. Indeed, in 2020, about 30 percent of papers from India were not cited at all, compared with 20 percent in both the United States and China. These trends are mirrored in many other low- and middle-income countries whose researchers struggle to get published in high-impact journals. But despite this challenging publishing environment, some Indian scientists have produced influential, highly cited studies in a number of fields in the past few years. One of those researchers, Sachin Gunthe, who studies aerosols at the Indian Institute of Technology Madras, teamed with Pengfei Liu, assistant professor in the School of Earth and Atmospheric Sciences, to study the origins of air pollution in Delhi. 

Nature

December 13, 2023

Diverse and full of sea life, the Earth’s Devonian era — taking place more than 370 million years ago — saw the emergence of the first seed-bearing plants, which spread as large forests across the continents of Gondwana and Laurussia. However, a mass extinction event near the end of this era has long been the subject of debate. Some scientists argue the Late Devonian mass extinction was caused by large-scale volcanic eruptions, causing global cooling. Others argue a mass deoxygenation event caused by the expansion of land plants was to blame. 
recently published study in the journal Communications Earth and Environment now posits that both factors played a role — and draws attention to the environmental tipping points the planet faces today. Chris Reinhard, associate professor in the School of Earth and Atmospheric Sciences, contributed to the study. (This story also appears in SciTechDaily and ScienceDaily.) 

Indiana University

December 6, 2023

Don't worry; it's not expected to happen for another billion years or so. But when Earth's atmosphere does indeed revert back to one that's rich in methane and low in oxygen, it's going to happen fairly rapidly, according to a 2021 study co-authored by Chris Reinhard, associate professor in the School of Earth and Atmospheric Sciences. This shift will take the planet back to something like the state it was in before what's known as the Great Oxidation Event (GOE) around 2.4 billion years ago. What's more, the researchers behind the study say that atmospheric oxygen is unlikely to be a permanent feature of habitable worlds in general, which has implications for our efforts to detect signs of life further out in the Universe.  (This study was also covered at Financial Express, MSNScienceAlertIndia Today and WION.)

ScienceAlert

November 21, 2023

School of Earth and Atmospheric Sciences researchers find dangerous sulfates are formed, and their particles get bigger, within the plumes of pollution belching from coal-fired power plants. Previous studies have found that the particles that float in the haze over the skies of Beijing include sulfate, a major source of outdoor air pollution that damages lungs and aggravates existing asthmatic symptoms, according to the California Air Resources Board. Yuhang Wang, professor in the School of Earth and Atmospheric Sciences at Georgia Tech, and his research team have conducted a study that may have the answer: All the  needed to turn sulfur dioxide into sulfur trioxide, and then quickly into sulfate, primarily happen within the smoke plumes causing the pollution.

Phys.org

November 17, 2023

Crevasses, as discovered through groundbreaking research led by Cornell, are not just fissures in the ice; they serve a crucial function in the circulation of seawater beneath Antarctic ice shelves. This unique study, carried out with the assistance of an innovative underwater robot, suggests that crevasses may have a significant impact on the stability of these ice shelves. The Icefin robot, operated remotely, made an ascent and descent within a crevasse located at the base of the Ross Ice Shelf. This operation marked a significant milestone by providing the first 3D measurements of ocean conditions at the vital intersection where the ice shelf meets the coastline, commonly referred to as the grounding zone. Georgia Tech scientists included in this research include Benjamin Hurwitz, an Ocean Science and Engineering Ph.D. scholar, and Justin Lawrence, Ph.D. scholar in the School of Earth and Atmospheric Sciences. (This story was also covered at India Education Diary.) 

AZO Robotics

October 30, 2023

More than merely cracks in the ice, crevasses play an important role in circulating seawater beneath Antarctic ice shelves, potentially influencing their stability, finds Cornell-led research based on first-of-its-kind exploration by an underwater robot. The remotely operated Icefin robot’s climb up and down a crevasse in the base of the Ross Ice Shelf produced the first 3D measurements of ocean conditions near where it meets the coastline, a critical juncture known as the grounding zone. The robotic survey revealed a new circulation pattern – a jet funneling water sideways through the crevasse – in addition to rising and sinking currents, and diverse ice formations shaped by shifting flows and temperatures. Included in the Cornell research team is Justin Lawrence, a visiting Ph.D. scholar from the School of Earth and Atmospheric Sciences

Cornell Chronicle

October 27, 2023

One of the most consequential places on earth is also one of its least accessible: Antarctica’s icy underbelly. The grounding line is where the terrestrial ice sheet reaches the sea and begins floating, becoming the ice shelf. As global temperatures rise, seawater is eating away at that belly, forcing the grounding line to retreat and speeding the decline of Antarctica’s glaciers. Two new papers, though, are shining light on this mysterious realm. Alexander Robel, assistant professor in the School of Earth and Atmospheric Sciences who leads Georgia Tech's Ice and Climate Group, did not participate in the studies but is quoted in the article. 

Wired

October 27, 2023

The Elgin, S.C., community has been shaken by over 80 earthquakes since December 2021, and after four months of no tremors, the area has started shaking again. “We weren't expecting anything to come back, and then these two in the last three days have reminded us it’s not over yet," said Daniel Frost, Assistant Professor at the University of South Carolina Department's of Earth, Ocean & Environmental College. After studying the data, Frost and his collaborator, Zhigang Peng, professor in the School of Earth and Atmospheric Sciences, have come up with an idea. “Our theory is they are occurring on a fault of the Eastern Piedmont fault system, which is a known fault system, not an active fault system but known," Frost said. "Any earthquakes happening on these pre-existing faults are just kind of resettling and shuffling, maybe a little of disturbance because something has changed, but it's not the kind of ongoing tectonics like on the West Coast.” 

WLTX Columbia, S.C.

October 10, 2023

Around the coasts of the continents, where slopes sink down into the sea, tiny cages of ice called clathrates trap methane gas, preventing it from escaping and bubbling up into the atmosphere. Until now, the biological process behind how methane gas remains stable under the sea has been almost completely unknown. In a breakthrough study, a cross-disciplinary team of Georgia Tech researchers discovered a previously unknown class of bacterial proteins that play a crucial role in the formation and stability of methane clathrates. College of Sciences team members include Jennifer Glass, associate professor in the School of Earth and Atmospheric Sciences; Raquel Lieberman, professor and Sepcic-Pfeil Chair in the School of Chemistry and BiochemistryDustin Huard, a researcher in Lieberman’s lab and first author of the study;  Abigail Johnson, a former Ph.D. student in Glass’ lab and co-first author on the paper, and James (JC) Gumbart, professor in the School of Physics. (The study was also covered at India Education DiarySciTechDaily, Space.com, and Astrobiology.) 

ScienceDaily

September 27, 2023