Earth System Modeling EAS 4610 / 6130 Fall Semester 2005

Scheduling : Tuesdays and Thursdays 9:30 - 11:00 pm Room L1116

Instructors

Carlos Cardelino - Room 1114 - phone: x4-1751 - e-mail: carlos@eas.gatech.edu

Teaching Assistant

Grading

Homeworks	15%
Exams (2)	40%
Term project	35%
Presentation	10%

Matlab

We will use "Introduction to Matlab 6 for Engineers" by Palm.

Through the Georgia Tech license, students will have network access to Matlab 6.5 on the computers in the EAS Computer Lab Room L1110. Each student will have a computer account for easy access to Matlab and computer storage space.

Important Dates

September 29 - Selection of model topic due October 6 - Exam I November 29 - Exam II December 6 and 8 - Presentations Final Exam day - Presentations (if needed)

Earth System Modeling EAS 4610 / 6130

TENTATIVE LECTURE TOPICS

- Introduction to computer modeling and Matlab
- Box models

One box :	Freshwater chemistry Atmospheric chemistry

Multiple boxes : Biogeochemical cycles

- Equations of interest for Earth System modeling Ordinary differential equations Systems of ordinary differential equations Partial differential equations
- Numerical methods
 Discretization: explicit, implicit and semi-implicit schemes Round-off, truncation and computational errors Convergency, consistency, and stability
- 1-D to 3-D models
 Advection, dispersion and reactive transport models
- Nonlinear systems and chaos Lorenz system Magnetic field inversions

Stiff set of equations

- Inverse methods
 Source-receptor models
 Seismic tomography
- Stochastic models and Monte-Carlo methods Forest fires and percolation Self-organized criticality Ensemble predictions

Earth System Modeling EAS 4610 / 6130 GEORGIA TECH HONOR CODE

Students in this class are expected to abide by the Georgia Tech Honor Code and avoid any instances of academic misconduct, including but not limited to:

- Possessing, using, or exchanging improperly acquired written or oral information in the preparation of a paper or for an exam.
- Substitution of material that is wholly or substantially identical to that created or published by another individual or individuals.
- False claims of performance or work that has been submitted by the student.

See the published Academic Honor Code for further information. The complete text of the Academic Honor Code may be found at

http://www.deanofstudents.gatech.edu/integrity/policies/honor_code.html

Earth System Modeling EAS 4610 / 6130 TERM PROJECT INFORMATION

Project Guidelines

An important part of this course is the numerical model that you will develop for an atmospheric, geochemical, geophysical, geotechnical, environmental, hydrologic, or biogeochemical process or system. As a general guideline for the choice of a project, consider some of the physical or chemical systems or processes that you have studied within EAS.

Non-EAS students should use examples from their own fields of study. Graduate student projects are distinguished from undergraduate projects by being more sophisticated, more challenging, and directly related to their research.

As a general rule, you should choose a modeling project that relied on solving fundamental equations of mathematical physics numerically in space and/or time. Ideally, your project should be based on relatively simple equations that can first be solved analytically for some easy case (e.g., a steady-state solution or a solution that reduces the spatial dimensions of the problem). Then you will want to discretize your equations (we will study this in the first half of the course) and develop a computer program that solves the equations numerically. This computer program will allow you to test your numerical approximations against the analytical solution, to test the sensitivity of the process/system to variations in important parameters in the problem, to calibrate the model using a data set, and (possibly) to verify the model using multiple data sets. We strongly encourage the use of the scientific computing language Matlab, although we will consider requests to use compiled languages such as Fortran, C, or Pascal.

It is desirable that the modeling be motivated by the need to understand a process or system. Thus, it is helpful to develop a model for a system for which you have existing real data. These data can be taken from any literature source, from something you have done in another EAS course, or from a Web site that provides real data. The data do not have to pertain directly to the final model, but may instead be relevant to some intermediate step in your model (e.g., a steady-state solution).

Project Report Outline

1. Introduction

What is the main theme? Why is it important? What are the motivations for the study? How is it currently being studied?

2. Modeling approach

What are the fundamental physical/chemical/etc. processes? Include all relevant equations. Describe all terms and parameters. Describe all assumptions being made. Describe the numerical methods used.

3. Results

What tests did you run with the model? Describe the results. How do the results compare with any analytical solution you developed? How do the results compare with those in the literature? How do the results compare to data that pertain to this process? How can you explain any differences?

4. Conclusions

What did the model tell you about the process you were studying? How could the model be improved?

5. References

Follow the format described in the next section

6. Appendix

Printout of model code with commentaries

Some Specific Guidelines

- The project report may be a maximum of 12 (undergraduates) and 16 (graduate students) double-spaces (12 point font, with 1 inch margins) pages. Figures, references, tables, appendices, and program listings are NOT included within the 12/16 page count. Please use an appropriate equation editor for all equations and spell-check before handing in the documents.
- Figures must be sequentially numbered and clearly labeled. Every figure requires an explanatory caption. Any figure taken from other scientists' work should be clearly labeled as, for example, "After [Jones et al., 1996]". You may not use the original author's figure caption.
- Any values you use in your model should be attributed to a reference. You must also provide an explanation for why this value was chosen in the first place.
- You must detail your assumptions.
- You should compare your model results to at least one set of real data and statistically quantify the agreement. You must also explain why your model

results may not provide a good agreement to the data and give suggestions for ways in which the model might be improved.

- You must include a listing of your code as an appendix to your paper.
- References should be clearly made using the standard mode of reference for the Earth Sciences. Within the text, a reference is made as: [Jones et al., 1996]
- Journal reference: Jones, R. L., S. Davis, and R. Smith, Article's title in small letters (except for proper names like Kansas), *Jour. Hot Air*, 67, p.33-87, 1999.
- Book article: Jones, R. L., Chapter's title, in: eds. S. Chimera and D. Boondoggle, Book's name, New York, McDuffy-Holt and Col, p.110-128, 1996.

Examples of Project Topics

Chemistry of the ozone layer Urban pollution chemistry Dispersion of pollution plumes Carbon or nitrogen cycling Oceanic nutrient cycling Evolution of spreading ridges and initiation of magmatism Ocean circulation Biogeochemical reactions in soils Hydrothermal processes Atmospheric radiative balance Chaos in some natural system Temperature structure and heat transfer of solid Earth Growth of volcanoes Geyser eruptions Magma differentiation from mantle partial melting Plant uptake of groundwater Melting of an iceberg Erosion, sediment transport, and deposition River meandering Seismic wave travel time through multi-layered Earth Contaminant transport through soils or water Eutrophication of lakes Evolution of propagating rifts Slope failure Brittle faulting in the crust Heat, chemical and/or fluid flow in porous or fractured rocks Shallow water waves Coupled flow and saline intrusion in a coastal aquifer Heat transfer in sediments undergoing vitrification Tidal pumping of a phreatic aquifer Stalagmite growth Climate change due to solar variability Vertical infiltration of heavy metals in soils Seismic tomography