Seismic Imaging for Extended Image Volumes with Source Estimation
In this thesis, I adopt ideas of finding the structure from randomness to recover the low-rank representations of the full subsurface extended image volumes which can give us access to any elements and image gathers. I derived the time-domain wave-equation based factorization via randomly probing which helps to remove the computational bottlenecks in both wave-equation solves and the imaging conditions. Also, I designed the framework combined with power iterations to increase the recovered accuracy without increasing the probing size.